

geotechnics SPECIALISTS MANAGING THE EARTH

PRELIMINARY GEOTECHNICAL ASSESSMENT - BEXHILL VILLAGE PROPOSED REZONING

John Jacobson & Kevin Teeling

GEOTALST03108AA-AB 29 August 2007

Coffey Geotechnics Pty Ltd ABN 93 056 929 483 4/6 Russelton Drive Alstonville NSW 2477 Australia

1	INTRODUCTION	1
2	SCOPE OF WORK	1
2.1	Fieldwork	1
3	SITE DESCRIPTION & PROPOSED DEVELOPMENT	1
4	SUB-SURFACE CONDITIONS	2
4.1	Stratigraphy	2
4.2	Groundwater	3
4.3	Slope Hazard Assessment	4
5	RECCOMENDATIONS	5
5.1	Recommendations for Development Based on Slope Hazard Assessment	5
5.2	Excavation Conditions	6
5.3	Suitability of Site Soils for Use as Fill	6
5.4	Batter Slopes and Retaining Wall Design Parameters	8
5.4.1	TEMPORARY & PERMANENT BATTER SLOPES	8
5.4.2	RETAINING WALLS	8
5.5	Note on proposed lot layout	9
5.6	Foundation of roadways on colluvial soils	9
5.7	Development of alluvial floodplains	10
5.8	Recommendations for further work	10
6	LIMITATIONS	10

.

IMPORTANT INFORMATION ABOUT YOUR COFFEY REPORT

Coffey Geotechnics GEOTALST03108AA-AB 29 August 2007

.

;

7

.

Figures

Figure 1: General arrangement and aerial photography indicating test pit locations

Figure 2: Proposed lot and road layout

Figure 3: Slope analysis plan and hazard assessment

Appendices

Appendix A: Engineering Borehole Logs and Explanation Sheets

Appendix B: Examples of Good Hillside Practice

Coffey Geotechnics GEOTALST03108AA-AB 29 August 2007

1 INTRODUCTION

Coffey Geotechnics Pty Ltd (Coffey) has conducted a preliminary Geotechnical investigation for the proposed rezoning of Bexhill Village situated directly east of the Bexhill settlement.

The aim of the study, which was commissioned by John Jacobson & Kevin Teeling, was to identify potential geotechnical issues that may affect the rezoning and subsequent development proposed for the site. The report was commissioned to provide:

- A slope hazard assessment, noting the observed hazards on the site and our assessment of the likelihood of those hazards occurring.
- An assessment of excavation conditions at the location of proposed cuts (if known) for road construction.
- An assessment of the suitability of the site soils for use as fill.
- Preliminary recommendations and design parameters for retaining walls and batter slope angles to support permanent and temporary excavations.

Coffey conducted the work in general accordance with proposal GEOTALST03108AA-AA. This report presents the results of the assessment.

2 SCOPE OF WORK

2.1 Fieldwork

Fieldwork was carried out on 18 and 19 July, and 20 August 2007 and comprised a site walkover by an Engineering Geologist from our Northern Rivers Office, and the excavation of 22 test pits with a rubber tyred backhoe. Test pits were excavated in order to aid assessment of the subsurface conditions, and define a geotechnical model for the landforms of the site. A review of publicly available air photos, geological maps and soil landscape maps was also undertaken for the site and the immediate surrounding areas. The investigation locations have been shown on Figures 1, 2 and 3 overlying aerial photography, the proposed residential lots and road alignments, and the slope analysis plan respectively.

Engineering Logs were compiled during the exposure of the test pits and these are presented in Appendix A, with explanation sheets defining the terms and symbols used in their preparation.

3 SITE DESCRIPTION & PROPOSED DEVELOPMENT

The site is approximately rectangular and extends around 820m in the north-south orientation and 450m in the east-west orientation. Figure 1 indicates the site boundaries including aerial photography of the site.

The proposed development is understood to entail a large number of residential blocks and access roads across the site. The proposed layout of the blocks and road alignments has been attached as Figure 2. We note this layout is preliminary and is likely to change prior to construction.

The site is situated mostly on the western face of a basalt ridge and alluvial floodplains. As such, generally the northern and eastern halves of the property fall, and therefore drain, southwards and westwards respectively, at slopes of between 10% (5.7°) and 20% (11.3°) with some areas steeper than 20%. The steepest slopes observed on the site are located west of the ridgeline near the north east corner of the site. The lower-lying south-eastern quadrant of the site is typically flatter at less than

Coffey Geotechnics GEOTALST03108AA-AB 29 August 2007

10% and slopes down to the south. A slope analysis plan has been attached as Figure 3 indicating the extent and angle of the slopes. (This plan was computed by Riordans Consulting Surveyors, based on an initial site survey. The slope analysis has been computed, but not confirmed on the ground by surveyors.)

The site is currently used for cattle grazing and includes an abandoned small slaughterhouse near the centre of the northern boundary. Vegetation consists mainly of grass with scattered trees. More dense vegetation exists along the steeper slopes of the west facing ridgeline. This ridgeline is steep to very steep and includes slopes up to 100% (45°), and exposures of basalt outcrop and boulder scree.

Evidence of slope instability and slope wash soils of cobbles and boulders was observed throughout the investigation on the slopes at the western side of the property. Features included colluvial soils, rotated boulders and the steep rocky scarp slope, that is interpreted to be a landslide failure plain and the source of the deep colluvial material near the central north east portion of the site. Minor landslide scarps of up to 5m in length were also observed along the steeper portions of the hillside to the south.

A large area of hummocky ground showing signs consistent with landslide debris was observed around TP12. The extent of the area is marked on Figure 3. This material was interpreted to be colluvium, which is a combination of slope wash soils and landslide deposits derived from weathering and mass movement of the slopes uphill. The slope uphill of the hummocky ground near the ridgeline are bouldery and include areas of rock outcrop. This slope lacks a colluvial clay profile or residual soil profile.

Small areas of fill (e.g. bricks, tyres) were observed near the western boundary close to the existing township, in particular west of the creek near TP9.

Some services (Telstra and water mains) were observed along the western boundary of the site, and a subsurface telecommunications line was observed to transect the site from west to east along the fence line between paddocks.

4 SUB-SURFACE CONDITIONS

4.1 Stratigraphy

The Tweed Heads 1:250,000 geological map shows that the site is underlain by Lismore Basalt and sedimentary rocks, possibly of the Kangaroo Creek Sandstone of the Grafton Formation and/or the Nerranleigh Fernvale Group.

The Soils and Landscapes map of the Lismore and Ballina area (1:100,000 scale) indicates that the site, east of the main road through Bexhill, consists of soils classified into three general types, which are described as:

- CLA in the north-west of the site Calico landscape variant typically consisting of rolling hills with long slopes of the Walloon Coal Measures (sedimentary formation of silt- and sandstones). This is classed as a transferral landscape. It is noted that dispersive clays may exist in this landscape variant coupled with low fertility rates and high erosion potential. Steep slopes present a mass movement hazard.
- EL in the south of the site Eltham Landscape of alluvial floodplains which drains basaltic areas. It is noted that acid soils are common and that a flood hazard typically exists in this landform.

 RO in the east of the site – Rosebank Landscape of Lismore Basalt landscape of rolling hills with slopes typically 20 – 40%. Furthermore, it is noted that the Rosebank landscape is prone to acid soil generation, and steep slopes create a mass movement hazard.

Directly west of the main road through Bexhill, a sandstone quarry exists, and it is indicated on the above map that this quarry is located in the Kangaroo Creek Sandstone formation, which is overlain by the Lismore basait in the area of the quarry.

The above general classification of the site soils was generally observed to be consistent with the site conditions during the site investigation, however the boundaries between the units varied in location.

In the area characterised as RO or Lismore Basalts, the soil profile typically presented as follows:

- Colluvium typically silty clay, red to red brown and grey, firm to hard, medium to high plasticity, which may include variable portions of gravel, cobbles and boulders. The colluvial material is derived from slopewash and landslide events, and is characterised by being unpredictable between investigation locations. (The colluvium is generally assessed to have similar engineering properties to uncontrolled earth fill) overlying –
- Extremely weathered basalt typically characterised as dense clayey gravels, upon which refusal
 occurred in some instances on an extremely weathered basalt shelf.

In the area characterised as CLA or Calico landscape, the soil profile typically presented as follows:

- A silty clay layer at the surface, of colluvial origin, highly plastic, from pale grey to dark brown to black, firm to very stiff, overlying –
- Residual sandy / silty clay layer, colour ranging from pale grey to orange mottled brown and grey, stiff, overlying –
- Extremely weathered Sandstone and siltstone, dense to very dense, typically described as a sandy clay or clayey sand to gravel.

In the area characterised as EL or alluvial floodplains, the soil profile typically presented as follows:

- Alluvial silty clay, of high plasticity, brown with a trace of rootlets, overlying –
- Alluvial silty clay, grey and mottled brown in colour, changing to grey at depth, stiff. Refusal
 was typically not encountered in the alluvial floodplain areas.

Further details of the materials intersected by the boreholes are given on the Engineering Logs presented in Appendix A, with explanation sheets defining the terms and symbols used in their preparation.

4.2 Groundwater

All test pits presented moist to wet soils. Conditions suggesting groundwater seepage were observed at three locations, TP9, TP13, and TP10. No overnight observations of standing water levels were made as test pits were filled in directly after exposure.

Groundwater inflow was observed at 1.1m at TP9, which was situated in the lower lying area next to a minor creek. At TP13, inflow was observed at 4.7m, being upstream of TP9. The groundwater inflow at TP9 and TP13 is presumably due to the proximity to the creek.

Groundwater inflow was observed at 2.8m at TP10 near the extremely weathered basalt to rock interface, which suggests that some perching of the water table on the slopes is possible. It is our experience in the basaltic terrains of the Lismore Basalt that perched groundwater tables are common,

and that prediction of groundwater levels and seepage is very difficult. Groundwater levels fluctuate dramatically with rainfall, and vary locally depending on the degree of fracturing and jointing of the rock mass.

Ground water levels may fluctuate after rain or as a consequence of other climatic effects, so seepage may occur on other parts of the slopes at other times.

4.3 Slope Hazard Assessment

A number of instability related hazards were noted across the site and have been used to assess the likelihood of future slope instability. Hazards noted were:

- Soil creep
- Small translational landslides of 5m³ to 10m³
- · Hummocky ground consistent with debris from a large older landslide event,
- Exposed very steep scree slopes consistent with a back scarp landform derived from a large landslide.

These hazards were noted generally on slopes that are underlain by basaltic soils. Soil creep is expected to be most active on the areas underlain by colluvium.

Figure 3 presents landslide hazard zones (Low, Medium, High and Very High) based on the observed landslide hazards on site, the topography, and the subsurface soil profile.

The Hazard zones are detailed below:

Low Hazard: This area lies on predominantly gently sloping ground on the crests of ridges, and the floodplain downslope of potential landslide debris run-out reach. Slope angles are generally less than 10% and instability is considered to be unlikely, other than localised events along the immediate margins of creeks. Steeper slopes underlain by sedimentary rocks are included in this classification.

Medium Hazard: This area includes steeper slopes on the flanks of the hillsides and gullies. Slope angles are typically in the range of 15% up to approximately 20%. Instability involving rapid mass movement is considered to be unlikely on undisturbed ground, though soil creep is an active slow process. The likelihood of rapid mass movement (such as landslides) occurring is likely to increase significantly if the natural drainage is altered or slopes are steepened by excavation or filling, without adequate engineering of structures.

The trigger for landslide events may be inadequately supported excavation, poor engineering, seismic events, significant increases in the soil moisture regime (such as excessive and prolonged rainfall or leaking services), or development conducted not in accordance with good hillside practice (Appendix B) or a combination of all of the above.

High Hazard: This area is restricted to the steeper ground on hillsides and in drainage gullies. These slopes exhibit signs of existing soil creep, erosion and mass movement. Slope angles are greater than 20%. It is considered that there is significant potential risk of localised landslides or similar rapid mass movement in this area. Soil creep is expected to be an active process in this area where soil thicknesses are greater than 1m deep. The extent and depth of colluvial soils at specific location will significantly affect the likelihood of slope instability occuring. Likelihoods will increase significantly if the natural drainage or existing vegetation is removed or slopes are steepened by excavation or filling without adequate engineering.

Very High Hazard: This area includes areas of previous landslide debris, the very steep slopes steeper than 35% and slopes immediately downhill of very steep slopes and scree slopes. The likelihood of translational landslides, rock rolling events, debris flows and remobilisation of landslide debris is considered significant, as landslides are an active process in this area. Settlement of the landslide debris is expected to be ongoing and unpredictable. Construction of roads and buildings in this area will require particular and detailed attention to the geological hazards so as not to further increase the slope instability hazards.

Slope instability is an active and ongoing process.

5 RECCOMENDATIONS

5.1 Recommendations for Development Based on Slope Hazard Assessment

The design and construction of all the structures and infrastructure on the site should be carried out in accordance with good hillside practice as outlined in Appendix B. It must be accepted that the potential risks associated with hillside construction are greater than construction on level ground in the same geological environment. The impact of development may be adverse and inappropriate construction techniques can increase the potential for ground movement.

Careful attention should be paid to the treatment of water emanating from springs as these have the potential to significantly increase the risks associated with instability if they are not appropriately handled. Methods for treatment of water emanating from springs may take the form of trench drains or horizontal borehole drains, with flows directed to the stormwater system. The need for such systems, and the location and design will need to be assessed during design of structures forming the developments.

Recommendations for each Hazard Zone are provided below:

Low Hazard: This area is considered suitable for residential development with the potential for instability placing no restrictions on house type or design other than good engineering and construction practice. Note that development of the floodplain soils at the base of the slopes will require consideration of other geotechnical issues, in particular periodic inundation and very reactive soils that may have a low bearing capacity.

Moderate Hazard: This area is considered suitable for residential development, however the likelihood of slope instability could increase significantly if the natural drainage is altered or slopes steepened by excavation or filling. Earthworks should be minimised, and filling restricted to a maximum of 1m. Septic / Grey water system discharge should be carefully controlled to reduce changes to soil moisture.

It is recommended that geotechnical assessments complying with AGS2000 be carried out for individual house blocks in this area to provide appropriate advice on the footing design and potential engineering constraints posed by slope instability hazards for proposed houses. As a minimum, footings for such structures will be required to found below all slopewash and colluvial soils. Engineering design and construction should follow the guidelines for hillside construction and practice attached as Appendix A.

High Hazard: The likelihood of instability will increase significantly if the natural drainage is altered, existing vegetation is removed, or slopes steepened by excavation or filling.

Residential construction may require significant engineering and slope hazard assessment works in this area. Should construction be undertaken it is recommended that site-specific geotechnical studies that include subsurface investigations be carried out for individual developments to provide appropriate

advice on slope stability issues, footing design and potential engineering constraints. The costs of such investigations would likely be significant. Some sites may require significant stabilisation works prior to undertaking the development.

Very High Hazard: This area would not typically be considered suitable for development. Should it be considered, significant stabilisation works may be needed to remediate the hazards, and considerable engineering and design input would be needed to undertake developments. Foundations of buildings are expected to require deep piled solutions and would likely be cost prohibitive, or significant earthworks may be required to remove the landslide debris and replace it with controlled fill to allow shallow foundations.

The above comments assume that excavations, drainage and construction work are carried out in accordance with good industry practice. General recommendations and guidelines for good and poor hillside construction practice are shown in Appendix B.

At the least all slope stability risk assessments should be carried out in accordance with 'Landslide Risk Management Concepts and Guidelines' published by the Australian Geomechanics Society.

5.2 Excavation Conditions

Generally, excavations with hydraulic excavation equipment should proceed readily to similar depths as that undertaken in our investigations (depths of around 1.5m) across the eastern half (Lismore Basalt profile) of the site. The backhoe, which was equipped with a bucket 300mm with clay/tiger teeth typically refused around 2m below the ground surface, but in some instances excavation depths of up to 5m were achieved. Spoil from these excavations will be generally Silty Clay and gravel with some cobbles.

In the alluvial flood plain area of the site excavation proceeded to depths of 5m without difficulty. Spoil from excavations in the alluvial area will typically be highly plastic clays.

In the area underlain by sedimentary rocks (north-western area of the site) excavation was typically possible to 2m depth. The excavator refused at 2m depth in TP11 while excavations proceeded with little resistance to about 4m at the other test pits in this area (TP7, TP9, TP13). Spoil from excavations may include sandy clay and clayey gravel.

The very steep portion of the north west of the site includes significant areas of exposed rock and boulders, and excavation of these areas is likely to require the use of rock breaking equipment and techniques. Depending on the volume and nature of bulk excavation, and the production rates required, either very large bulldozers and/or blasting may be required. Detailed excavations would require hydraulic rock breakers.

Significant variation is expected in the depth of the soil profile across the site. Local areas where bedrock is shallower and rock strengths are greater than typical are expected.

5.3 Suitability of Site Soils for Use as Fill

Generally the soils exposed on the site are suitable for re-use as controlled fill. The following comments should be noted:

 The placement or removal of greater than 1m of material on areas noted as "moderate" slope hazard or any fill or excavation in areas of "high" or "very high" slope hazard should be undertaken only after seeking suitably qualified and experienced engineering input.

- Where site regrade is proposed, all existing topsoil, including uncontrolled fill, vegetation or other potentially deleterious material should be removed to spoil or stockpiled for re-use as landscaping materials only;
- The basalt derived residual and colluvial soils are expected to be moderately to highly
 reactive (susceptible to volume changes with variation in moisture content), and the alluvial
 soils of the low lying areas are expected to be highly to extremely reactive. These soils will
 need to be placed and compacted to the specifications below to reduce the risk of
 excessive soil movements.
- The alluvial soils are expected to be highly to extremely reactive.
- Moisture conditioning of the alluvial soils and some colluvial soils will be required to achieve the moisture specification. Potentially the alluvial soils may require drying, and the colluvial soils may require wetting up.
- Removal of oversize material from basalt derived soil types may be required prior to use of the material as fill, depending on the proposed land use.

Fill placement methodology:

- All fill should be placed in accordance with relevant Australian Standards, notably AS3798-2007.
- Approved fill beneath residential structures should be placed in layers not exceeding 300mm loose thickness and be compacted to a minimum dry density ratio of 95% Standard Compaction for cohesive materials provided applied foundation pressures are less than 100 kPa. Further advice should be sought should applied foundation pressures to controlled fill areas exceed 100 kPa.
- Granular soils such as sand and gravel (which were not observed on this site, and if required would need to be imported) should be compacted to a Minimum Density Index of 70%. Depending on the size of the granular material used, a method specification may need top be developed for the site to allow compaction of the granular material.
- Clay fill should be placed and maintained at ±2% of Standard OMC.
- All filling beneath residential structures should be carried out under Level 1 construction monitoring and testing as defined in AS3798-2007.
- Adequate consideration should be given to the type of material used beneath the structures, in terms of implications on the site classification.

All Earthworks should be carried out in accordance with the recommendations outlined in AS3798-2007, 'Guidelines for Earthworks for Commercial and Residential Developments'.

5.4 Batter Slopes and Retaining Wall Design Parameters

5.4.1 Temporary & Permanent Batter Slopes

Table 1 presents recommendations for both temporary and permanent unsupported batter slopes

 Table 1:
 Temporary and Permanent Batter Slope Recommendations

Material	Batter Slope Type	Maximum Slope Angle (Horizontal: Vertical)
Fill, Alluvial Soils and	Temporary	2H:1V
Colluvium	Permanent	3H:1V
Residual Soil	Temporary	1H:1V
	Permanent	2H:1V
Highly Weathered Basalt	Temporary	0.5H:1V
and Sedimentary Rock	Permanent	1H:1V

Adequate drainage should be provided for all batter slopes. As a minimum during rainfall, surface water on the high side of temporary slopes should be diverted away from the slope face and the face protected by the placement of plastic sheeting. Should observation of the temporary slopes used during construction indicate the batter slopes are not performing adequately, further advice should be sought.

Should exposures of greater than 1.5m in height be excavated in highly weathered rock we recommend that an engineering geologist should map the faces to assess the likelihood of pre existing defects in the rock and soil affecting the slope stability.

Where structures or roadways are proposed to be founded above batter slopes a setback may be required. At the least a setback of the height of the batter slope should be imposed from the crest of the slope. Further advice should be sought if structures are to be constructed within this distance.

5.4.2 Retaining Walls

Gravity type retaining walls may be designed on the basis of a triangular stress distribution. Design parameters for the geotechnical units are shown in Table 2. Design of the walls must take into account any surcharge from sloping ground or other loadings behind the wall which will increase the earth pressure loads from the horizontal ground case. Global failure of the structure should also be checked for acceptable factors of safety.

Adequate drainage should be provided for all retaining walls. Vertical drains should be connected to a geofabric wrapped perimeter drain provided at the toe of the final excavation, which should discharge to the site stormwater system to provide long term drainage behind excavation walls. Flushing points should be incorporated into the design of the perimeter drain and periodic maintenance should be incorporated into the management plan of the proposed development.

Drainage measures as described above, if properly maintained, should reduce the risk of elevated pore pressures at the back of the wall, however pore pressures may still be generated at other points behind the wall. The design should incorporate an allowance for such pressures. A typical allowance of

potential water pressure build-up equivalent to one-half the wall height is considered to be reasonable with such drainage measures installed.

UNIT	UNIT WEIGHT (kN/m ³)	EFFECTIVE COHESION c' (kPa)	EFFECTIVE FRICTION ANGLE Φ' (degrees)
Controlled Fill ^{1.}	20	0	32
Colluvial Soils	20	0	25
Residual Silty and Sandy Clay	20	5	28
Extremely Weathered Material	22	10	. 34

TABLE 2: Preliminary Retaining Wall Design Parameters

Notes: 1. Assumes a cohesion-less and granular free draining fill placed and compacted in accordance with AS4678-2002 Earth Retaining Structures.

5.5 Note on proposed lot layout

We understand the current lot layout is preliminary, however numerous lots on the current layout are very steep, and do not include an appropriately sloped building pad. Based on the landforms on the site and the slope instability hazards observed, we would recommend that you consider changing the layout to allow buyers of the lots room to accommodate the slope instability issues inherent with development of sloping sites. Furthermore, the landslide scarp and colluvial debris observed in the north west of the site are not likely to be economically developed, and may be a suitable site for community lands, flora and fauna reserves, and regeneration of the depleted rainforest habitat that once occupied the site if such is considered desirable.

Buyers of lots than are assessed as having a moderate hazard or greater will be required to found either on piles or use more advanced designs than cut to fill project homes. It is likely that specific structural and geotechnical engineering will be required for construction on these lots.

When adjusting the lot layout we recommend that the slope stability issues raised in this report be considered, and that where possible roadways, contour the site topography rather than transecting the slopes. Possibly a 'precinct' model of development may suit this site.

5.6 Foundation of roadways on colluvial soils

We do not recommend foundation of structures or roadways on colluvial soils or uncontrolled fill, unless specific and detailed investigations of the sites are undertaken, and suitable foundation conditions found or created. Foundation of roadways on colluvium may lead to increased slope instability risks and poor performance (settlement and landslide) of the roads and drainage infrastructure.

Earthworks should be limited to the minimum practical, and all filling founded wholly on residual soils, and placed in accordance AS3798-2007. Stormwater water discharge should be carefully controlled and adequately sized to reduce changes to soil moisture.

Based on the slope angles observed in the field, it is likely that retaining walls will be required to support the road corridor in some areas of fill and cut. These retaining walls should be engineered in accordance with AS4678 – 2002, Earth Retaining Structures, and should be founded within residual soil or weathered rock depending on their design loadings. Cut slopes steeper than 2H:1V in residual soil will require support, and batter slopes on controlled fill should not be placed steeper than 3H:1V

5.7 Development of alluvial floodplains

Geotechnically the soils within floodplains of the Lismore region are extremely reactive, and typically require deep (greater than 2m) piled foundations for residential structures. Foundations for larger structures than two stories may be required to extend to rock at considerable depth.

Piled foundations are required to be designed for uplift and drag exerted by expansion and contraction of the soils to the depth of seasonal influence (around 2m). In some cases de-bonding of piles in this zone is required. Other strategies could be employed, but all involve some cost above the usual.

Alluvial floodplains include deposits derived from flood events, and as such are expected to be inundated by floodwaters in the future. Specific advice pertaining to flooding may be required to develop these areas.

5.8 Recommendations for further work

Over and above the works recommended for investigation of the proposed residential lots prior to construction, we recommend detailed assessment of the cut portions of road works will be required prior to construction. The aim of further investigation work would be to more accurately assess foundation conditions at the location of the works, and confirm the preliminary design parameters offered herein. This work could only be carried out once lot layouts are confirmed.

6 LIMITATIONS

The assessment presented in this report is based on a limited number of investigation locations and observations. Engineering judgement has been made to assess potential conditions between investigation sites, but significant variability should be expected in the nature and depth of the soil units within man made and geological environments such as those evident at this site.

This report presents a preliminary assessment of the site conditions at the time of the site works. These conditions may change in the future. The parameters provided here are for preliminary design and planning purposes only. Further investigation will be required for individual residential developments, road construction and detailed assessment of slope stability risks.

Consideration should be given to these factors when following recommendations in this report.

For and on behalf of Coffey Geotechnics Pty Ltd

for Nicholson.

Tom Nicholson Senior Engineering Geologist

Important information about your Coffey Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give

preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for

specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Important information about your Coffey Report

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

Data should not be separated from the report*

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way.

Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

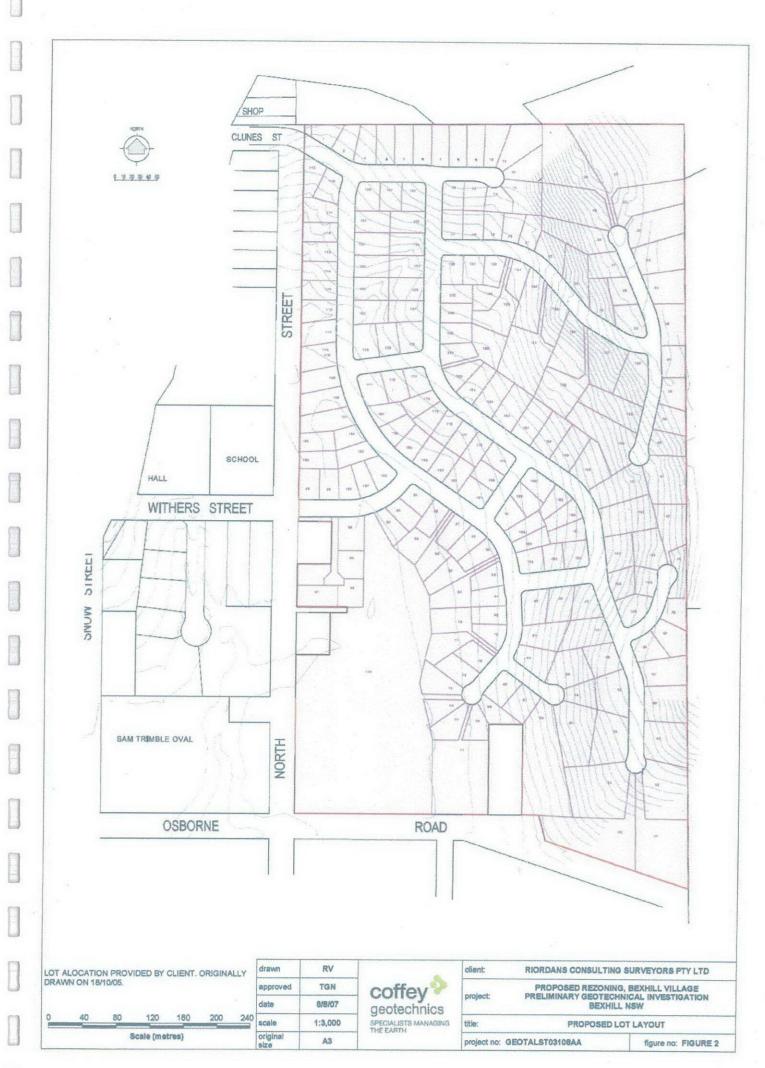
Geoenvironmental concerns are not at issue

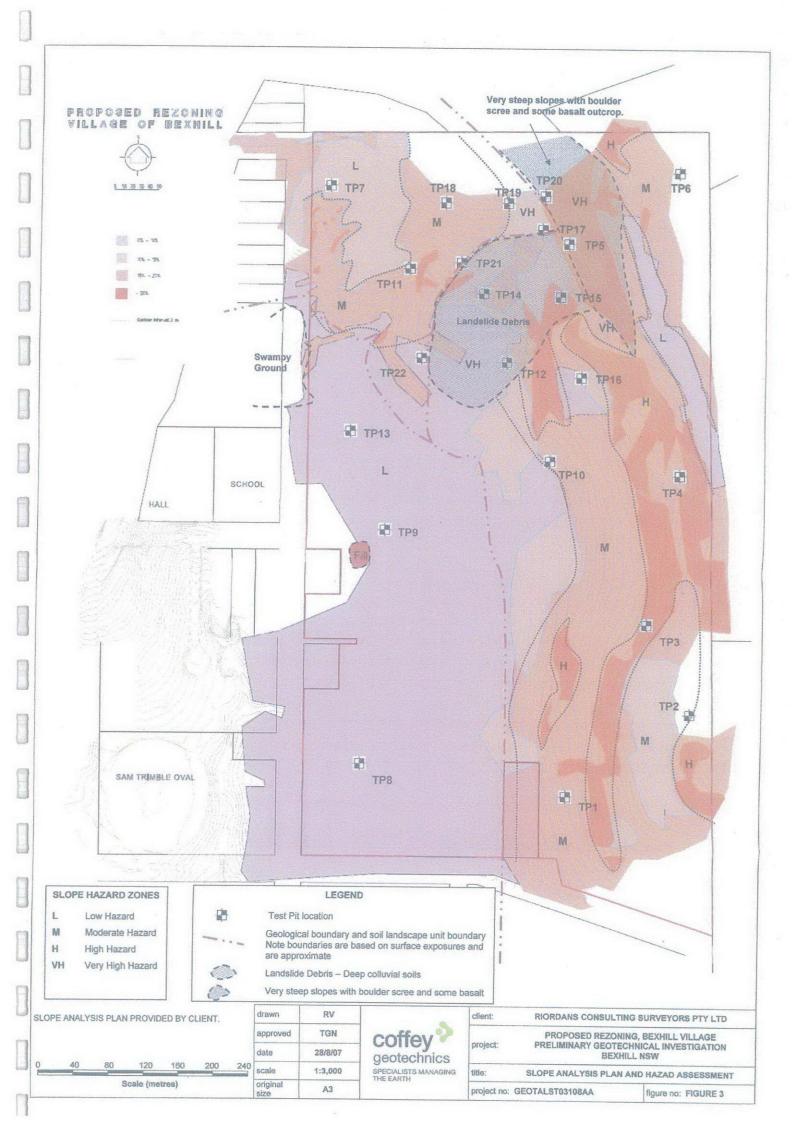
Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment.

Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.

Rely on Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.


Responsibility


Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

* For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical information in Construction Contracts" published by the Institution of Engineers Australia, National headquarters, Canberra, 1987.

Figures

Appendix A

Engineering Borehole Logs and Explanation Sheets

۰.

.

:

]

Clin Prin Pro Tes	ent: ncipa oject: st pit l		tion	erir RI BE	ng ori EXHI	LO DANS	g - соі	EX NSU	echnics cavation LTING SURVEY NICAL INVESTIGATION			Sheet Projec Date s Date c Logge	t No: tarted: omplete	1 of 1 <u>GE(</u> 18.7	<u>) TALST0310</u> .2007 .2007
	ipmen avatior			d model: ions:		e 520c ong 0	.5m wi	ide		-	4088 m 17461 n	1		L. Sunface: tum:	
method	cavat uotentation 123	support	inf water	notes samples tests, et		depth metres	aphic log	classification symbol	substance	cteristics	moisture condition	consistency/ density index	to pocket so a pocket so meter		structure and Ional observation:
			NONE OBSERVED	V=89,45k		0.5 1.0 1.5 2.0 3.0 		GW	Clay: high plasticity, dark grey, trace of 0.2m, trace of boulders and cobbles to diameter. Sitty CLAY: high plasticity, pale grey-bound medium to coarse grained gravel. Gravel: coarse, dark grey, with a trace of plasticity clay. TP1 terminated at 2.2m due to refusel of weathered basait shelf. Test pit TP1 terminated at 2.2m	wn, some		VSt	x *	RESIDUAL	SOIL
nethod N G 3H 3 3	d nat exit bac buil	rting khoe doze	r biai	vation est	peni 12 Wate	horing 34 no n ring	N r seletano ing to sel to sel		notes, samples, tests U ₂₀ undisturbed sample 50mm diameter U ₄₁ undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	classificati soli descrij based on ur system D diy M moist W wet Wo plasti	ption Niñed clas			Consistency VS F St VS H Fb VL	/density index very soft soft firm stilf very stiff hard frizble very loose loose

.

]

]

, . .

[]

Clik Prir		gi ai:		eerii R	ng ORL	Log	g - cor	Ex Isul	echnics cavation TING SURVEY			Sheet Projec Date s	<u>t No:</u> tarted: omplei	1	TP2 of 1 GEOTALST03108, 18.7.2007 18.7.2007 ALB
-	ipme	nt ty	pe a		Cas	R TO F e 520c		IRE	Pit Orientation: NW/SE Easting:		234 m	Check	ed by: R		urface:
_		atio	n ir	formatic notes	n 5,	depth			soil type: plasticity or particle characteristi	_	7535 m condition	consistency/ density index	Pocket Pocket Penetro- Docket	atum:	structure and additional observations
Ske			NONE OBSERVED	D		0.5 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		GW	0.4m depth. Silty CLAY: medium to high plasticity, pale gre some gravel with cobbles. Gravel: coarse grained gravel, brown with som medium plasticity clay. TP2 terminated at 2.3m due to refusal on extres weather basat shelf. Test pit TP2 terminated at 2.3m	ē		VSt		* •	TREMELY WEATHERED
Ske hetho	ក ៖ ៦ ស	o; letin	g ex oe b zer b	osura cavation ucket lade	S: per 12 wat		N I	•	$\begin{array}{c} U_{ac} & \text{undisturbed sample 50mm diameter} \\ U_{ac} & \text{undisturbed sample 63mm diameter} \\ D & \text{disturbed sample} \\ y & \text{vane shear (kPa)} \end{array}$	wet	tion fied cla			55 55 55 55 55 55 55 55 55 55 55 55 55	soft firm still t very still hard fiable

•

]

]

:]

								echnics cavation		:	Excav Sheet Projec			TP3 of 1 GEOTALST0310
Proj	cipal:	ation	BE	(HIL		EOTI	ECH	TING SURVEY NICAL INVESTIGATION		1	Date s	tarted: complet d by:		18.7.2007 18.7.2007 ALB
exca	ation di	mensi	ons:		520c Iong			Pit Orientation: East North	-	198 m 7636 m		R	.L. Su atum:	rface,
rethod	Bubbort 2 2		notes samples, tests, etc	RL	depth	aphic log	classification symbol	substance material soil type: plasticity or particle character colour, secondary and minor compony	istics,	moisture condition	consistency/ density index	100 pocket 200 c pocket 200 e penetro- 200 meter		structure and additional observations
HB	N	NONE OBSERVED	D		0.5		ਯ	CLAY: high plasticity, dark brown, trace of i to 0.2m depth. Sifty CLAY: high plasticity, pale brown-grey medium to coarse grained gravel. Gravel: Coarse grained, brown-dark grey, a	some	м	St H VD	X	RE	ULUVIAL SOIL
		-			- 1. <u>5</u> - - - - - - - - - -			TP3 terminated at 2.0m due refusal on extre weathered basalt shelf Test pit TP3 terminated at 2m				60	RO RO	IREMELY WEATHERED
					2. <u>5</u> 3.0 3.5 - - - - - - - - - - - - - - - - - - -									
Skei	ch						,			Į.	1	<u> </u>		
nethod V (3H 3	natural existin; backho bulidoz ripper excava	g exca be buci ter blei	vation ket	supp S sh pene 1 2	oring tration 3 4	N r		rotes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₅ undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample	classificatic soli descrip based on un system moisture D dry	tion			со VS S F S S F S S S H	very soft soft firm stiff very stiff hand

]

]

	-		echnics xcavation		Excav Sheet Projec		TP4 1 of 1 GEOTALST03108/
Client:	RIORD	DANS CONSL	ILTING SURVEY		Date s		18.7.2007
Principal:					Date c	ompleted:	18.7.2007
Project:	BEXHI	ILL GEOTECI	INICAL INVESTIGATION		Logge	d by:	ALB
Test pit location	REFER	R TO FIGURE			Check	ed by:	
equipment type an excavation dimens		e 520c	Pit Orientation:	Easting: 534266 m	· .	R.L.	Surface:
excavation inf		n long 0.5m wide materia	substance	Northing: 6817804	n	datur	n:
rnethod 5 benetration support water	notes samples, tests, etc	graphic bg dassification		anacteristics, E S mponents, E S	consistency/ density index	ocket openetro- meter	structure and additional observations
123	. RL				88	<u>8888</u>	
BH SYED	VS=71,23 kPa U50	0.5 1.0	to 0,2m depth.		St VSt	×	SOLLUVIAL SOIL
NONE OBSERVED	D	1.5 2.0	Sitty CLAY: medium to high plasticity some medium to coarse grained grav	, pale brown, el and cobbles,	H	۲ ۲	
		2.5 • GW	Gravel: coarse grained gravel, brown medium plasticity clay. TP5 terminated at 2.5m due to refusa		VD	600¢	XTREMELY WEATHERED
		3. <u>0</u> 3. <u>5</u> 	weathered basalt rock shelf Test pit TP4 terminated at 2.5m				
Sketch setbod natural expo existing exca H beckhoe buc butidozer bla ripper excavator	sure S si vation ket pen de <u>12</u> wate	sport shoring N nil 3 4 no resistance ranging to subservituel er water level on dete shown	notes, samples, tests U ₂₀ undisturbed sample 50mm diame U ₂₀ undisturbed sample 63mm diame D disturbed sample V vane shear (kPa) Be bulk sample E environmental sample R notusal	ter solit description based on unified cla system moisture D dry M moist W wet		n 8 	firm St stiff /St very stiff I hard D friable

]

[]

]

ſ

U	1 .	/	1	Uy		3	5-		echnics		-	Excav	ation	No.	TP5	
E	ng	jir	1e	erin	g l	Lo	J -	Ex	cavation			Sheet Projec			t of 1 GEOTA	LST03108
Clier	nt:	,		RIO	RD/	ans	CON	ISUL	TING SURVEY			Date s		1:	18.7.20	
Prin	cipal	l:										Date c	ompi	eled:	18.7.20	07
Proj	ect:			BE	HIL	L GI	EOTI	ECHI	IICAL INVESTIGATIO	l –	l	Logge	d by:		ALB	
Test						τοι	IGU	RE				Check	ed by	:		
equip					Case 2.3m		0.5m v	vide	Pit Orientation:	-	94193 m 318085 n			R.L. S datun	Surface:	
	ava			rmation			-		substance	Holding. O	100031			uacui	ł,	
method	5 penetration	support	water	notes samples, tests, etc	R1.	depth metres	graphic log	classification symbol	material soil type: plasticity or particl colour, secondary and min	characteristics, r components.	moisture condition	consistency/ density index	100 A pocket	a		ture and observations
<u>ا</u> ا		N		D		-		ਟਸ	Sifty CLAY: high plasticity, dark rootlets, cobbles and boulders to	rown, trace of 0.4m diameter.	M	н			XOLLUVIAL SC	SIL
					1	1		ан	Silty CLAY: high plasticity, pale some coarse grained gravel and	rown-grey, with xobbles	·	VSt		×		
			្ផ											×		
			NONE OBSERVED			2										
			吗 巴 巴			-										
			D Z			3	00									
			ŀ	D	1		I									
						4	111					St	×			
10.00				D		-		GP	Gravel: coarse grained cobbly gr with some high plasticity clay.	ivel, brown-grey,		D		R	ESIDUAL SOII	
						5			TP5 terminated at 4.6m due to re Test pit TP5 terminated at 4.6m	usal on boulders.			×			
								:								
						£										
						-										
						Σ										
i			ŀ													
						8										
Ske	tch													. –		
netho				- I		port			notes, samples, tests	ciaesific		bols an	d		consistency/de	
4 (3H	C)	xintin		avation 1		horing	N	nli	U _{st} undisturbed sample 50mm U _{st} undisturbed sample 53mm D disturbed sample	lameter based on		essificati	on		VS v S s	ery soft oft
3H 3 2	b		xe buc xerbla		pen 12		meistan	~	D disturbed sample V vane shear (kPa) Be buik sample	system moleture	,	·····		4	St si	rm Lift ery stift
		KCBVI	tor		wet		nging to Kululi		E environmental sample R refusal	D day M mo	Hat				H ha Fb fr	ard table
				1	-			1		1 147				E E		
				Ĩ		water le on date					e stic limit sid limit				L ka	Ny loose Iose Iedium dense

•

]

]

٦

.

Clie	ng	in		erin RIO	g L RDA	-OC] - con	Ex ISUL	echnics cavation TING SURVEY			Excave Sheet Projec Date s Date c	t No: farted:			108/
Tes	iect: t pit k			REF		TO F			Pit Orientation: Eas	ting: 53		Logge Check	ed by:		RV Surface:	
exca	vation	dim	ensio	ons:		long	the second s	the state of the second st		•	18162 n			latun		
method	123	support	water	notes sampies, tests, etc	RL	depth	graphic log	classification symbol	material soil type: plasticity or particle charact colour, secondary and minor compo	eristics, nents.	moisture condition	consistency/ density index	100 E Docket 200 E Docket 300 e Denetro-		structure and additional observation	ons
Ha		N	NONE OBSERVED			0.5		GC	Gravelly CLAY:high plasticity, pale brown some cobbles. Clayey GRAVEL:coarse grained gravel, b		M	St H VD	× *	¢G E	XXLUVIAL SOIL XTREMELY WEATHERE 34SALT	D
						1.5 2.0 3.0 3.5 4.0			TP5 terminated at 1.1m due to refusal on weathered basalt shelf. Test pit TP6 terminated at 1.1m	extremely						
Sk Mett N X H B R E	r 4 1 t		g exc be bu cer bi		S : per 1 2 Wa	S	n o realista anging to riusal avel		notes, samples, tests U _{so} undisturbed sample 50mm diameter U _{so} undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs buik sample E environmental sample R refusal	W W	ription unified o	cie selfica			consistency/density index VS very soft S soft F firm St still VSt very still H hard Fb fristle VL very icces L icces	

Clier Prine Proje	ngi nt: cipal:	ne	erin RIC BE	DRD. XHII	Lo	g - сол	EX ISUL	ECHNICS Cavation TING SURVEY			Sheet Projec Date s	t No: tarted: omplete d by:	1	TP7 of 1 GEOTALST03100 18.7.2007 18.7.2007 ALB
	ment typ		d model: ons:		520c long	0.5m v	vide		•	3931 m 18198 n		R.		rface:
method .	penetration benetration	Ι	notes samples, tests, etc		depth	ma ଡୁ ୁ		substance		molsture	consistency/ density index	ed penetro- meter		structure and additional observations
Ske	tch	NONE OBSERVED	D				क्स क	CLAY: high plasticity, pale grey. Sitty CLAY: high plasticity, brown grey, wil gravel. Sitty CLAY: high plasticity, white. Sandy CLAY: medium plasticity, sand is fit coarse grained. TP7 terminated at 4.7m approaching refuse extremely weathered sandstone. Test pit TP7 terminated at 4.7m			VSI VSI SI VSI	× ×	(NC	SIDUAL SOL SILTSTONE D STRUCTURE) IREMELY WEATHERED NDSTONE
method N X BH B R E	natura	g exca oe buc ze <i>r</i> bla	ivation ket	S si pene 1 2 wete	ran Freit	reeletano Iging to Usal Yel		notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₄₃ undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs buik sample E environmental sample R refusel	cisesificati soli descri based on u system zooisture D dry M molai W wet Wp plasti	ption nilled cla		- 1	COSS SF StSS H FDL L	soft Tim stiff

·

]

	nt: icip	gi al:	n	e	e	ring RIO	g RD,		og s c	- :0n	Ex SUL		nics vatio surve	n	N N		; 	Excava Sheet Project Date si Date c Logged Checka	t No: tarte omp d by:	d: leted:	19.7	<u>)TALST03</u> .2007 .2007	3108.
exca							Case 2.8m				ide	Pit	Orientation:		Easti	-	33856 m 317552 m	, ,		R.L. : datur	Surface:		
ethod	_	atio	ະ		n sa	ation otes nples, ts, etc		de				substa		material ticity or partic ndary and mi			moisture condition	consistency/ density index	100 E pocket	er perieuc-		structure and ional observa	
				NONE OBSERVED	VS	₽a J50 ₽a D D =51,1 ₽a			<u>8 [2] [3] [4] [2] [3] [2] [3] [4] [4] [5] [4] [7] [8] [7] [8]</u>		CH I	Chang TP8 te	e colour to g	5.2m due to nated at 5.2m	limit of mac			57	xx x				
Meth N R BH R E	(etc	na ex bu	letin ckh	gex beb beib	oogur cava ucke isce	tion	S В-	appoint shore metra	ting		nił	notes, U ₂₀ U ₂₀ D V E E R	undisturbe disturbed vane sher bulk samp	ed sample 50m ed sample 63m sample er (kPa)		soli der based o system moistu D d	ication sy acription on united (re ky hoist				consiste VS F St VSt H F D VL	ncy/density ind very soft firm soft firm soft very soft hard friable very loose	ex

•

]

									echnics cavation		Excav Sheet Project			TP9 of 1 GEOTALST03	1084
Clie	nt:			RI	ORD	ANS	CON	ISUL	TING SURVEY			tarted:		19.7.2007	1007
Prin	cipa	1:									Date c	omplete	d:	19.7.2007	
Proj	ect:			BE	XHI	LL G	EOTI	ECHI	VICAL INVESTIGATION		Logge	d by:		RV	
Test			_			TO	-IGU	RE			Check	ed by:			
equir exca				i model:		: 520c	0.5m v	vida	Pit Orientation: N-S Easting:					nface:	
	ava	-		ormatio		, vulg			Northing:	68178	01 m	dat	um:		
method	C penetration	support	water	notes sampies tests, et		depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristic colour, secondary and minor components	re 98 moistura	condition consistency/ density index	100 Pooleet 200 Pooleet 300 Ponetro- 100 meter		structure and additional observat	lons
퓹		N		VS= 43,1 kPa	7			ਸ	Sitty CLAY: high plasticity, black, trace of roots organics.		W F	1111	ALI	LUVIAL SOIL	
			ļ	Bs	1			сн	CLAY: high plasticity, grey, some mottle brown specks.	1		Â	RE	SIDUAL SOIL	
						-									
				D		-			Colour change to brown>		St				
			5		1										-
						3									
															-
			F	D]	4	·/.	ŝ	Clayey SAND: high plasticity, sand is fine graine grey/orange.	ed,	MD	×			
							, /								-
						5									
		$ \uparrow $		· ·	+		<u></u>		TP9 terminated at 5.1 m due to limit of machine reach.		_				
						6			Test pit TP9 terminated at 5.1m						
								l							-
															-
	Ì					8									
Ske	tch														
etho:	ne ex be bu ng	itural isting ickho- ildozi per cavat	excar buck of blas	vation let	Ss pan 12 wate	Same ret	N i ging to stal	nit •	U _{so} undisturbed sample 50mm diameter eo U _{so} undisturbed sample 63mm diameter bas D disturbed sample synt V vane shear (kPa)	il descriptic sed on unific stem obsture dry moist wet	d classification	1	COSS F St SH FD L	soft firm stiff	

]

		erin	g Lo	og -	Ex	echnics cavation		:	Sheet Projec	ation No t No: tarted:	 TP10 1 of 1 GEOTALST03108 19.7.2007
Principal: Project: Test pit lo	cation.	BEX	(HILL		ECH	NICAL INVESTIGATION		1		omplete d by:	
equipment excavation excavati	ype and dimensi	i model; ons:	Case 520 2.5m kong	0c g 0.5m	wide		•	4136 m 17845 m		R.L	L. Surface; tum:
method penetration	support water	notes samples, tests, etc	de RL me	hic kog	classification symbol	· · · · · · · · · · · · · · · · · · ·	eristics, ments.	moisture condition	consistency/ density index	100 pocket 200 by penetro- 800 eter	structure and additional observations
	7 2.8	VS=56,20 KPa	1 1 2 2 3 3		GC	Sity CLAY: high plasticity, black. Clayey GRAVEL:coarse grained, brown, gravel particles. Clayey GRAVEL:coarse grained, brown, of medium plasticity. TP10 terminated at 3.1m die to refusal on weathered basaft shelf. Test pit TP10 terminated at 3.1m	clay is — —	M	D VD	XX	EXTREMELY WEATHERED
X exi BH bad B bul R rip	ural expo sting exc :khoe bu idozer bi ser savator	avation cket	<u></u> ON (ing N ation 4 T-norasiata	noe	notes, samples, tests U _{so} Landisturbed sample 50mm diameter U _{so} undisturbed sample 63mm diameter D disturbed sample 63mm diameter D disturbed sample S buik sample E environmental sample R refusal		ription unified ci		Ĩ	consistency/density index VS very soft S soft F firm St stilf VSt very stiff H hard Fb fitable VL very locse L iccee MD medum dense

]

.

	ng nt:	gi			rin	g I	Lo	g	-	Ex	cav	nic vatio surv	on					Exca Shee Proje Date Date	et ect N stal	io: rted:	1	19.7	1 TÀLS 2007 2007	<u>T031(</u>
Proj Tesi	ject: t pit	loca			BEX REF	ER	то) Fl				. INVE			East	ino.	534007	Logg Chec	ed t	by: by:		RV		
excar	vatic	n di	nen	ions:			long	0.	5m w mat		substa					-	6818087				atum:			
ethod	5 penetration	unort	T	1 83	i otes mpies, sts, etc	RL	dep metre	pth	graphic kog	classification symbol		li type: pl		nterial particle	characte compor	erístics, rents.	moisture	consistency/		200 Penetro-	f		structuri ional obi	
B			NONE OBSERVED		D		0.5 1.5 2.5 3.6 3.5			ਯ ਯ ਫ਼	Clayey brown, TP11 te	Sity GR Trace of f arminated by weath TP11 ter	AVE AVE	y, pale o arse gra arse fra	ange. ined grav	vel,		F		X	RE	ITREME SALT		HERED
Ska Ska N N S H B R E		naturexist	ngeb hoe b bzsri r	posun cavat Xade	ion	Si	pport shoring 2 3 4	Ki Ki Tangi Tangi Tangi	4		Tiotes, 1 Uso Uso D V Se E R	undistur disturbe vane shi bulk san	bed sampi bed sampi d sample bar (kPa)	e 53mm d		soli di based system moist D M W		t classific		· · · · ·	N E S V F V V L	/S ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	cyldensity very s soft firm stiff very s hard frieble very k loose	DR M

.

 $\left[\right]$

 $\left[\right]$

]

Clie Prin Proj	n(nt: icip ject	gi al:	n	90	erin RIC BE	g DRD	LC JANS	og s c sec	ON	EX ISUL	echnics ccavation LTING SURVEY INICAL INVESTIGATION	<u>.</u>	Sheel Project Date	ct No: started: completed	TP12 ^{1 of 1} <u>GEOTALST03108</u> 19.7.2007 : 19.7.2007 RV
Test equir exca	pme	nt ty	pe a	nd	RE model: ns:	Case	5200 long	;	GU 5m w		•	534103 r 6817971	n	ced by: R.L. datur	Surface:
ethod	2 perteration A		T		notes samples, tests, etc		der metr	T	graphic log	classification symbol	substance material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index		structure and additional observations
			NONE OBSERVED		D		Ē			ਲ ਕ	CLAY: high plasticity, black, some cobbles from 0.2 down to 4.1. Slity Sandy CLAY:high plasticity, pale grey, some brown mottling. TP12 terminated at 4.7m due to machine reach limit between large boulders of colluvial origin. Test pit TP12 terminated at 4.7m		VSt	×	
metho N X BH B R E	×	natu	ing e hoe i ozer r	kcav Xuck blac	ation at	S i per 1	oport shoring 2 3 4	on rangin rangin rakea	gto		U _{so} undistuited sample 50mm diameter soll de U _{so} undistuited sample 53mm diameter based D distuited sample system V vane shear (kPa) system Bs built sample moletur R refusal M		clessifica		consistency/density index VS very soft S soft F firm St stift VSt very stift H hard FD frieble VL very locae L locae

]

η

•

	n			erin	g	Lo	J -	Ex	chnics cavation	Sh Pro	cavation eet oject No: te started	1	TP13 of 1 GEOTALST03108/ 19.7.2007
Prin Proj Tes	iect: t pit	loca		REI	ER	TOF			ICAL INVESTIGATION	Log	te comple Iged by: Ecked by:		19.7.2007 RV
exca	vatio	n dir	nensi	ons:	2.5m	520c iong	0.5m v	vide	Pit Orientation: NNE-SSW Easting: 533911 / Northing: 6817916			R.L. Su tatum:	
lethod	benefication	upport	water	notes samples, tests, etc		depth metres	graphic log	classification symbol	soil type: plasticity or particle characteristics, colour, secondary and minor components.	consistency/	density index too pocket too pocket		structure and additional observations
HB		N		U50		1 1 1 1		ਰਸ ਨਸ	Sifty CLAY: high plasticity, dark brown, traceo fo M rootlets, CLAY: high plasticity, dark grey.	F	* *	AL	LUVIAL SOIL
			4.7	D				SC	Sandy CLAY:high plasticity, fine to medium grained sand, orange/pale grey. some wide clayey sand zones from 3.5m.	S	*	RE	SIDUAL SOIL
			-			1 5 1 1 6 1 1 7 1 1			TP13 terminated at 5.1 due to limit of machine. Test pit TP13 terminated at 5.1m				
Ske	etch			I		8							
H	ា ស ស ស ស ស	cintin; ackho	e buc er bla	vation ket	perin 1 2 Wate	tration 34 nor	N r velstano jing to val	•	notes, samples, tests U ₂₀ undisturbed sample 50mm diameter U ₂₀ undisturbed sample 63mm diameter D disturbed sample 70mm diameter Ba bulk sample 70mm diameter E environmental sample 70mm diameter R nefusal W wet			COS SSF SSS F SSS F SS SS SS SS SS SS SS S	soft firm stiff t very stiff hard friable

•

]

].

]

Clik Prir	ent	hC t: ipa	Jİ				rin <i>RI</i> (DF	j	4/	O (VS	g c	- 0N	Ex sul	Ca		nic atic surv	on EY							S P C	ixcav iheet rojec ate s ate c	t No tart om	o: ed: plet	1	of 1 GI 20	EOT .8.2 .8.2		5 T03 1	108A
Pro Tes equ	st p	pit		_		mc	RE del:	F		Τ	0						rientatio					sting:		34098	c	ogge heck		oy:	.L. \$	Al				
	ca		tio	ni	info	r r sa	iotes mple sts, ef	n 3,	.5m	lor	ng	ŀ	matic loo		subst	an	Ce		mete	riai	No	rthing	: 6	B1806		consistency/ density index		o penetro-	atun			uctum	e and servati	ons
		2		Nodes 2	NONE OBSERVED water									ER S	TOP with Grav Coan 0.4m Clay Thre End	e 5	type: pi lour, set ace of ru y CLAY grained, ameter riable 00mm di 10le at 5 TP 14 te	Clay, I oots, w High i with s	er bou	I minor lasticit race c ity, pro- obblet	compo y, dark f cobbi wm, gi s and b	5 m to	s. m, is ins to			88 51 H			C				Oit.	
S Mar N X HB R E	itho		nat exi bai rip	stin : ido: ido: ;er	iexp gex be b zart	cava Joka	tion t		s P- W	shi 2 2 ter		no n rang nafui nafui leve leve	nalatan ing to nal		note ೮೫ ೦ ೪ ೪ ೪ ೯ ೯ ೪		ampies, undistu disturb vane ai buik sa environ refusal	rbed si rbed si ed sam near (ki mpie mental	ample iple Pa)	63mm (soli de based : system moistu D 0 M 1 W 1 Wp 1	scripti on usifi	on ed c	nbols a lassifici				COMBINE VS F SVSt H D	stencj	very soft film stiff very hard friab very loos	atiff le loose s ium den:	

•

]

]

]

]

			-					echnics cavation		ş	Excav Sheet Projec			TP15 1 of 1 GEOTALST03	109 A
Client: Princip Project Test pi		lon:	BE	(HIL		EOT	ECHI	TING SURVEY		C C L	Date s Date c .ogge	tartec ompi d by:	d: eted:	20.8.2007	1004
equipma excavati	on dim	ensio	ons:	Case 2.8m		0.5m '		No	sting: 53415 rthing: 68103			·····	R.L. 8 datun	Surface: 1:	
excav pottem 12	upport	vater	notes samples, tests, etc	RL	depth metres	aphic log	dassification symbol	substance material soll type: plasticity or particle charac colour, secondary and minor comp	teristics, 5	condition	consistency/ density index	teo pocket	a	structure and additional observati	ions
Ha	N	0			0.5 1.0		сн GC	TOPSOL: Sity Clay, high plasticity, dari a trace of cobbles Cobbly Gravelly CLAY: high plasticity, of coarse grained, sub angular cobbles to C diameter	grey, with	Ŵ	F	xx	C	OLLIVIAL TOPSOIL	
		NONE OBSERVED			1. <u>5</u> 1 1 1 - 1		сн	CLAY: High plasticity, pale grey			St VSt	x			-
					2. <u>5</u> - 3. <u>0</u> -		GW	GRAVEL: Coarse grained, pale brange-b some medium plasticity clay	rown, with		D		8	XTREMELY WEATHERE ASALT >>800	D -
					3. <u>5</u> - - 4.0			End of hole at 3.2m due to limit of require investigation Test pit TP15 terminated at 3.2m							
	natural			Buippes S sh	sont coring	N		nofes, samples, tests U ₂₀ undisturbed sample 50mm diameter	classification solidescriptic	symb	oots and	1		consistency/density index /S very soft	
K 5H 3 3	existing backho buildiozu ripper excaval	exca e buci or blea	vation ket	pene 1 2 Wete	tration 3.4 	resistan ging to real	•	Vas understrukted sample Somm diameter D disturbed sample V vane shear (kPa) Bs buik sample E environmental sample R retuael	molecure based on unifie system molecure D dry M molec W wet		sa ilicatio			S soft	

•

; ______

:

.

]

]

				echnics	-	Excav	ation No.	TP16
Engi	neerin	g Log	g - Ex	cavation		Sheet Projec	t No:	1 of 1 GEOTALST03108A
Client:	RIC	RDANS	CONSUL	TING SURVEY		Date s	tarted:	20.8.2007
Principal:						Date c	ompleted	: 20.8.2007
Project:				NICAL INVESTIGATION		Logge	d by:	ALB
Test pit loca		ER TO F	IGURE	,		Check		
equipment typ excavation din		Case 520c	0.5m wide	•	534161 m 5817961 n	'n	R.L. datu	Surface:
	information			substance			Q2LL	
method 5 penetration support	notes samples, के tests, etc	depth RL metres	graphic log classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	molature condition	consistency/ density index	100 perieto 200 perieto 100 meter	structure and additional observations
	NONE OBSERVED		GC	gravel and cobbles up to 0.2m in diameter Gravelty CLAY: Medium to coarse grained, clay is medium plasticity, brown-orange GRAVIEL: Coarse grained, brown-grey, with a trace of medium plasticity clay End of hole at 2.8m due to limit of required investigation Test pit TP16 terminated at 2.8m		VSt DVD	×	RESIDUAL SOIL
K existir BH backh	l exposure g excavation ce bucket zer blade ator	support S shoring penetration 1 2 3 4 no ration weter weter is on out of the	newstance nging to tutal	Upper Undisturbed sample 50mm diameter soil de based diameter Upper undisturbed sample 63mm diameter based diameter D disturbed sample system V vane shear (kPa) moistu Bs bulk sample moistu E environmental sample D R retusal M	Ication sym acription n unified ci re ry noist astic smit astic smit			consistency/density index VS very soft F firm St stilf VSt very stiff H hard Fb frable VI. very loose L loose

•

 $\left[\right]$

Engineer	y geo ing Log - E	xcavation	Excavation Sheet Project No.	1 of 1
Principal: Project: Test pit location:	REFER TO FIGURE	HNICAL INVESTIGATION	Date starte Date comp Logged by: Checked by	ieted: 20.8.2007
equipment type and moc excavation dimensions:	2.8m long 0.5m wide	Northing: 681	1156 m 1030 m	R.L. Surface: datum:
ਲ ਦੇ ਸ਼ੁੱਤ san	htion materia http://www.commans.com/ http://wwww.commans.com/ http://www.commans.com/ http:	al substance material soil type: plasticity or particle characteristics, colour, secondary and minor components.	molisture condition consistency/ density index 200 & pocleat	2a
RH NONE OBSERVED		a trace of cobbles C Cobbly Gravelly CLAY High plasticity, gravel is coarse grained, sub angular cobbles to 0.2m in diameter diameter CLAY: High plasticity, pale grey GRAVEL: Coarse grained, pale orange-brown, with some medium plasticity clay	M F X	COLLUVIAL TOPSOIL COLLUVIAL SOIL - EXTREMELY WEATHERED BASALT pp >600
Sketch	3.5	End of hole at 3,2m due to limit of required investigation Test pit TP15 terminated at 3,2m		
nethod natural exposure existing excavation H backhoe bucket butklozer blade ripper excavator	support S shoring N nil <u>penetration</u> 1.2.3.4 to resistance ranging to ranging to water	U ₂₀ undisturbed sample 50mm diameter solt description	nifed classification	consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb frable

.

]

]

Ί

									echnics cavation	Excav	ation No.	TP17 1 of 1
Clies Prin Proj Test	nt: cip ect	ał; :		RIC BE	RD. (HIL	ANS	COI	NSUL ECHI	TING SURVEY	Date o	started: completed d by:	GEOTALST03108A 20.8.2007 :: 20.8.2007 ALB
equip excav	жле vətik	nt ty on di	pe ar mens	nd model:	*	520c	0.5m v	wide	Pit Orientation: E-W Easting: 534149 r Northing: 6818125	ŋ	ed by: R.L. datu	Surface:
lethod	5 penetration	linnert		notes samples,	RL	depth metres	graphic log	dassification symbol	substance materiel soil type: plasticity or particle characteristics, colour, secondary and minor components.	consistency/ density index	ato & pocket	structure and additional observations
BH	and a subscription of the state of the	N	NONE OBSERVED					ਨਸ ਨਸ	TOPSOL: Clay, high plasticity, dark grey, with a trace of roots and cobbles M Gravelly Bouldery CLAY1-ligh plasticity, brown, grey, gravel is coarse grained, up to 40% boulders and cobbles to 600mm in diameter M	F S VSt	* x x x	COLLUVIAL TOPSOIL COLLUVIAL SOIL
	and share a star a s					8			End of hole at 4.8m due to collapse of pit Test pit TP17 terminated at 4.8m		× · · · · · · · · · · · · · · · · · · ·	-
Sket H	10 10 10 10	ciating ackho	e buc erbia	evation sket	supp Sah 12: 12:	ration 4 - no re - rangi 2004 ratus	N r Heintance	, I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			n 1	consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard FD frable

; ;

٦

]

.

	, ,		1		Ξy	r –			J -		ecł							ł	Excava	atior	n No	•	TP1	9		
E	n	g	in	e	eri	ng	j L	.0	g -	E	ca	va	tio	n					Sheet Projec		:	1	of 1 GEO	TAL	ST031	08
Clie	ent				R	IOF	RDA	NS	CON	ISU	LTING	; su	IRVE	Y					Date s	tarte	sd:		20.8.	.200	7	
Prit	ncij	al:																I	Date c	omp	lete	d:	20.8.	.200	7	
Pro	ojec	t:			B	EX	HIL	L GI	EOTI	ECH	INICA	L IN	IVEST	TIGAT	TION			l	Logge	d by	:		ALB	1		
Tes	st p	it lo	cati	on:	R	ËFI	R	τοι	FíGU	RE									Check	ed b	y:					
					model:			520c	-		Pì	t Orier	ntation:	N-S		Eastin	•	34127 m					aface:			
exci					ns: rmati		n Ior	gu	.5m wi ma		subst	ance				North	ing. o	818135 n			Uat	UM:			· · ·	
R		hailailainni	t		note sampi	- 1			graphic log	classification	5			mate	viai			ure tion	consistency/ density index	pocket	penetro- meter				ire and bservatio	SULS
method	1		support	water	tests,	- 1	RLI	deptr netres	daph	classi		soii typ colou)e: plast r, secon	icity or pi Idary and	article cl 1 minor c	haracter compone	istics, ents.	moisture condition	const densi	8 8	Pa 3 홍 홍					
포			N					-		œ	TOP:	SOL:0	Clay, high ts and c	gh plastic cobbles`	city, dari	cgrey, w	/ith a	M	F	Π		α	ALUVIA	LTOP	SOIL	
				NONE OBSERVED				0. <u>5</u> 1.0		G	fine t	7: Higi o med	1 plastic ium grai	ity, white ined san	, pale b d	rown, wi	th some	-	VSt	×		ŔĒ	ESIDUAL	SOIL		-
				NONE OF				1. <u>5</u>		¢	CLA	Y: Higi	n plastic	ity, white	, pale o	range		-	н						ATHERE	5
								2. <u>0</u>														×	NDSTO	NE		
								2. <u>5</u> 3.0 3. <u>5</u> 4.0			Inves	tigatio	n n	n due to I		<i></i>					anana ang may na ya ya ang ang ang ang ang ang ang ang ang an					
me	the				osure			sport			U _{so}	ัม		d sample			soli de	ication sy ecription				1	vs	ve	vsity index ry soft	
X BH B R E		e b fi	xistin ackh	gexo bebt berb	avation Icket			a 4	on no resist ranging t ratusal	whóe	U _{so} D V Bs E R	di Vs bu er	isturbed s ane shea: uik sampi	r (kPa)		ameter	system moteti D (M)		classific	ation			S F St VSt H FD VL	ha fri	m	

.

]

٦

.

				erin	g١	Lo	3 -	Ex	echnics cavation			Excav Sheet Projec			TP20 of 1 GEOTALST03108A
Pro	ent: ncipa ject: st pit		ition:	BE	KHIL		EOTI	ECHI	TING SURVEY NICAL INVESTIGATION			Date s Date c Logge Check	omple d by:	ted:	20.8.2007 20.8.2007 ALB
•	pmer watic				Case 2.3m		0.5m v	vide		•	4165 m 18156 n		ļ		unface:
_	cava			ormation				terial	substance		1	1		Jacom	· · · · · · · · · · · · · · · · · · ·
method	5 penetration	support	water	notes samples, tests, etc		depth metres	graphic log	classification symbol	material soli type: plasticity or particle charac colour, secondary and minor comp	teristics, onents.	moisture condition	consistency/ density index	18 200 A poolet 300 A penetro		structure and additional observations
E			NONE OBSERVED			0.5 1.0 1.5 2.5 3.0 3.5 4.0		GW	Bouldery Gravefly CLAY High plasticity gravel is coarse, trace of roots to 0.5m, t sandstone clasts (10%), boulders to 0.7n GRAVEL: Coarse grained, dark grey, bro End of hole at 1.9m due to refusal on hig weathered basalt Test pit TP20 terminated at 1.9m	- <u></u> wn	Μ	St VSt VD			GHUY WEATHERED BASALT
Sk NXBB RE	1	naturu Ixiistii Ixiistii	ice bu izer bi	avation cket	S s		resistan nging to Naat Vel shown	nii	notes, samples, tests U _{sc} undisturbed sample 50mm diameter U _g undisturbed sample 63mm diameter D diaturbed sample 63mm diameter V vane shear (kPa) Bs tulk sample E environmental sample R refusal	based on system D dry M mot W wet Wp plas	ription unified d				consistency/density index /S very soft 5 soft 7 firm 5t stiff /St very stiff 4 hard 7b frisble /L very loose JD medium dense

•

[]

Cliei Prin Proje	nt: cipa ect:	1:		RIO BEJ	RDA KHILI	L GE	COI	NSUL ECHI	Cavation TING SURVEY		 	Sheet Projec Date s Date c Logge	t No tart omj	ed: plet		of 1 GEOTALST0310 20.8.2007 20.8.2007 ALB
excav	omen vatio	t typi n dim	ensi	f model: ons:	ER (Case 5 2.5m k	520c	1GL		Pit Orientation: E-W Eastin Northin	-	(107 m 1057 m	Check	ed t	R	L. Si tum:	utaçe;
tethod	ava benetration 123	support Io	water	notes samples, tests, etc	RL m	depth	graphic log a	classification symbol	substance material soil type: plasticity or particle characteria colour, secondary and minor componen	stics,	molsture condition	consistency/ density index	k	ac d penetro-	ļ	structure and additional observation:
			NONE OBSERVED			0.5 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		ਲ	TOPSOIL: Silty Clay, high plasticity, grey, tra roots to 0.3m depth Silty CLAY: High plasticity, white, pale orang some fine to medium grained sand Silty CLAY: High plasticity, white, pale orang some medium grained sand End of hole at 2.5m due to limit of required investigation Test pit TP22 terminated at 2.5m	je, with		F SWST	X		RE	SCLUVIAL TOPSOIL
Skei	tch					4.0										
nethod N SH 3 R E	na sx be bu ríp	tural (isting ckhor ildoze per cavati	excer buci r blac	vation ket	weter W wa	ring nation	4	nii Na	Uso undisturbed sample 50mm diameter Usi undisturbed sample 63mm diameter D disturbed sample Sample sample V vane sheat (kPa) Bs buik sample E environmental sample R refusal	classification soli descripti based on unif system motature D dry M molat W wet Wp plastic I W, liquid Ila	ion Sed cia:					soft firm stilf truety stilf hard friable very loose loose

 $\left[\right]$

									chnics			Excava	atio	n No		TP21
E	n	giı	ne	ering	g l	-00] -	Ex	cavation			Sheet Projec	t No	c	1	of 1 GEOTALST03108
Cli	ent:			RIO	RD/	ans	CON	ISUL	TING SURVEY		1	Date s	tarte	xd:		20.8.2007
Pri	ncip	al:									1	Date o	omp	lete	:d:	20.8.2007
	ject								IICAL INVESTIGATION			ogge	_			ALB
			tion:		Case	TO F 520c	IGU		Pit Orientation: E-W Easti	na: 534	054 m	Check	ed b		S	uface:
,		•••	nensi		2.1m	long	0.5m v		North	•	8083 m	1			tum:	
ex	_	_	n info	ormation	1		ma	í.	substance			~ ×	<u> </u>	6	1	
method	penetration	15	water	notes samples, tests, etc	RI	depth	graphic kog	classification symbol	material soil type: plasticity or particle character colour, secondary and minor compon	ristics,	moisture condition	consistency/ density index	k	o electronic de la constante de	1	structum and additional observations
旧	12	3 V N	1			-	BIB	CH CH	TOPSOIL: Clay, high plasticity, dark grey, w trace of roots, with a trace of cobbles to 200		M	St	≗£ 	8 8		DLLUVIAL SOL
							<u>}</u>]]}	<u></u> .	dameter							
			B			0.5	M	сн	Sity CLAY: High plasticity, white-orange, w medium to coarse grained sand	with some		VSt				
			NONE OBSERVED			1.0										
			NEO			-										
			ž	, ,		1.5	Ŵ	CH	Silty CLAY: High plasticity, white, plac grey	, with		н			EX	TREMELY WEATHERED
						-			Silty CLAY: High plasticity, white, plae grey some medium to coarse grained sand					İ	SA	NDSTONE
						- 2. <u>0</u>										
									End of hole at 2.1m due to limit of required investigation]	
						2. <u>5</u>			Test pit TP21 terminated at 2.1m							
						3. <u>0</u>									1	
						-										
				i		3. <u>5</u>					İ					
						-			, ,							
<u> </u>	 	<u> </u>				4.0				l						
5	ketc	1														
					-											
met	hođ				<u>8</u> Ur	port		—-i	notes, samples, tests	classifica	lion #v#	nbois ar	xd			consistency/density index
N X		exist		avation	81	ihoring		nit	U ₂₀ undisturbed sample 50mm diameter U ₂₇ undisturbed sample 63mm diameter	eoil desci based on (iption					/S very soft S soft
8H B R		build	hoeibu ozerbi r		per 2 2			nce	D disturbed sample V vane shear (kPa) Bs bušk sample	system moisture						- n irm St still /St very still
Ē		excar			wet		nging to Kisal		E environmental sample R refusal	D dry M mob	st				F	hand To frisble
					L	water le on date	vel		1	W wet Wo plas						L very loose
				1			SEX0WIT	- t	I		tic limit d limit				L	. loose ID medium dense

 $\left[\right]$

]

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	fine	2.36 mm to 6 mm
Sand	coarse	600 µm to 2.36 mm
	medium	200 µm to 600 µm
	fine	75 µm to 200 µm

MOISTURE CONDITION

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH Su (kPa)	FIELD GUIDE
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	-	Crumbles or powders when scraped by thumbnail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85
1	

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:
Trace of	Presence just detectable by feel or eye, but soit properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils; <15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%

SOIL STRUCTURE

	ZONING	CEMENTING						
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water,					
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.					
Pockets	Irregular inclusions of different material.							

GEOLOGICAL ORIGIN WEATHERED IN PLACE SOILS Extremely Structure and fabric of parent rock visible. weathered material Residual soil Structure and fabric of parent rock not visible. TRANSPORTED SOILS Aeolian soil Deposited by wind. Alluvial soil Deposited by streams and rivers. Colluvial soil Deposited on slopes (transported downslope by gravity). Fill Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils. Lacustrine soil Deposited by lakes. Deposited in ocean basins, bays, beaches Marine soil and estuaries.

.

Soil Description Explanation Sheet (2 of 2)

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

(Exclu	udin	g particl	ELD IDENTI	60 mr	n and basin	GEDURI Ig fractions	ES sone	estimated mas	usc	PRIMAP	RY NAME
COARSE GRAINED SOILS More than 50% of materials less than 63 mm is larger than 0.076 mm	(A 0.075 mm particle is about the smallest particle visible to the naked eye)	GRAVELS GRAVELS More than half of coarse fraction is larger than 2.0 mm	CLEAN CLEAN GRAVELS (Little or no fines)	Wide range in grain size and substantial amounts of all intermediate particle sizes.					GW	GRAVEL	
			임원물을통	Predominantly one size or a range of sizes with more intermediate sizes missing.					GP	GRAVEL	
			GRAVELS WITH FINES (Appreciable amount of fines)	Non-plastic fines (for identification procedures see ML below)					GM	SILTY GRAVE	
			GRA MITH Appression and and and and and and and and and an	Plastic fines (for identification procedures see CL below)					GC	CLAYEY GRAVEL	
		arse 2.0 mm	CLEAN SANDS (Little or no fines)	Wide range in grain sizes and substantial amounts of all intermediate sizes missing					sw	SAND	
an 509 le		SANDS n haif of c natier than	다잡 <u>다</u> 2 문	Pred with	lominantiy o some interi	one size or mediate si	' a rai zes n	nge of sizes nissing.	SP	SAND	
Mare th		SANDS More than half of coarse fraction is smaller than 2.0 mm	SANDS WITH FINES (Appreciable amount of fines)	Non-plastic fines (for identification procedures see ML below).				tion	SM	SILTY SAND	
			APP of the second secon	Plastic fines (for identification procedures see CL below).					sc	CLAYEY SAND)
-	(A 0.075 mm particle is about		IDENTIFICAT	ION P	ROCEDUR	ES ON FR.	ACTI	ONS <0.2 mm	L .		
than		SILTS & CLAYS Liquid limit less than 50				ICY	то	UGHNESS			
15 T			None to Low Qui		Quick to s	Quick to slow None		ne	ML	SILT	
FINE GRAINED SOILS More than 50% of material less than 63 mm is smaller than 0.075 mm			Medium to High		None N		Me	dium	CL	CLAY	
Pot H			Low to media	m	Slow to very slow		Lov	v	OL	ORGANIC SILT	
FINE In 50%		SILTS & CLAYS Liquid limit greater than 50	Low to mediu	m	Slow to very slow L		Lov	v to medium	МН	SILT	
ore the			High None			Hi		h	СН	CLAY	
Ž		SIL) Gree	Medium to High None			Low to m		v to medium	он	OH ORGANIC CLAY	
HIGHLY SOILS	OR	GANIC	Readily identi frequently by	fied by fibrou:	/ colour, od s texture.	our, spong	iy fee	and	Pt	PEAT	
 Low plas 	stici	ty – Liqui	id Limit W _L less	than 3	35%. • Moc	fium plastic	ity – 1	W _L between 35	% and 50%.	! <u></u> ,, ,	
<u> </u>	<u>M</u>	MONE	DEFECTS II	I SO	L	•					
TERM			DEFINITION			DIAGRA	M TERM		DEFINI	DEFINITION	
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to tayering (eg bedding). May be open or closed.				27.77.78 27.77.78 27.77.77 27.77.77 27.77.77 27.77.77 27.777		SOFTENED ZONE	to a defect in which the	zone in clayey soil, usually adjacent o a defect in which the soil has a ligher moisture content than elsewhere.		
OINT	ha nc be	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to tayering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.						TUBE	of a large number of ser inter-connected tubes. I with clay or strengtheneo	ubular cavity. May occur singly or as one f a large number of separate or tter-connected tubes. Walls often coated tith clay or strengthened by denser packing f grains. May contain organic matter	
HEARED ONE				2	TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.					

 smooth or stickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.
 Image: Shaped blocks in some cases the som

72810/07-06

)

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

]

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

7

Rock Description Explanation Sheet (1 of 2)

DEFINITION	S:	Rock substance, defect and	mass are defined as follo	ws:			
Rock Substa	nce :	n engineering terms roch sub lisintegrated or remoulded b	ostance is any naturally oc by hand in air or water. Oth	curring aggregate	of miner cribed us	als and organic sing soil descr	c material which cannot be iptive terms. Effectively
Defeat	1	iomogenous material, may b	e isotropic or anisotropic	•			•
Defect		liscontinuity or break in the r					
Mass	1	iny body of material which is a nore substances with one or	not effectively homogeneou r more defects,	ua. It can consist of	two or m	iore substance	s without defects, or one or
SUBSTANCE	E DE	SCRIPTIVE TERMS:		ROCK	SUBST	ANCE STRE	NGTH TERMS
IOCK NAME		imple rock names are use eological classification.	d rather than precise	Term	Abbrev- iation	Point Load Index, I ₈ 50 (MPa)	Field Guide
ARTICLE SIZE	(irain size terms for sandstone	are;				
Coarse graine		fainly 0.6mm to 2mm					
Medium grain	ed 1	fainly 0.2mm to 0.6mm		Very Low	VL VL	Less than 0.1	Material crumbles under fil
Fine grained	Ņ	lainly 0.06mm (just visible) to l	0.2mm				blows with sharp end of pi can be peeled with a knife; pieces up to 30mm thick c
ABRIC		erms for layering of penetrat leavage etc.) are:	ive fabric (eg. bedding,				be broken by finger pressu
Massive	Ν	o layering or penetrative fabric	C.			•	
Indistinct		ayering or fabric just visible. Little e	, ,	Low	L	0,1 to 0,3	Easily scored with a knife; indentations 1mm to 3mm show with firm bows of a
Distinct	e	ayering or fabric is easily visi asily parallel to layering of fal	bric.				pick point; has a dull soun under hammer. Pieces of core 150mm long by 50mr
Term Abb	revi		on				diameter may be broken b hand. Sharp edges of core may be friable and break
Residual Soli	RS	Soil derived from the w mass structure and sut longer evident; there is volume but the soil has	bstance fabric are no a large change in	Mədium	м	0.3 to 1.0	during handling. Readily scored with a knife;
xtremely Veathered	xw	transported. Material is weathered to has soll properties, ie, it	t either disintegrates or				piece of core 150mm long l 50mm diameter can be broken by hand with difficu
Aaterial		can be remoulded in wa still visible.	ter. Original rock tabhc	High	н	1 to 3	A piece of core 150mm lor by 50mm can not be broke
lighly Veathered lock	HW	Rock strength is change whole of the rock subst usually by iron staining extent that the colour of recognisable. Some min	tance is discoloured, or bleaching to the the original rock is not terals are decomposed				by hand but can be broker by a pick with a single firm blow; rock rings under harnmer
		to clay minerals. Porosity leaching or may be dec deposition of minerals to	meased due to the in pores.	Very High	VH	3 to 10	Hand specimen breaks after more than one blow of a pick; rock rings under
loderately /eathered ock	MW	The whole of the rock sul usually by iron staining extent that the colour of	or bleaching , to the	-			hammer.
lightly	sw	longer recognisable. Rock substance affected	d by weathering to the	Extremely High	EH		Specimen requires many blows with geological pick t break; rock rings under
Weathered extent that partial staining or partial Rock discolouration of the rock substance (usually by dimonite) has taken place. The colour and texture of the fresh rock is recognisable; strength properties are essentially those of the fresh rock substance.			hammer. Notes on Rock Substance Strength: 1. In anisotropic rocks the field guide to strength applies to the strengt				
			ted by weathering.	break readi	y parallel :	to the planar ani:	
	FR	Rock substance unaffeo		2. The term "e	xtremelv I	OV." is not used.	as a rock substance strendth
tes on Weath S1726 suggest ubstance weath	ering s the t vering		W. For projects where it is	term. While makes it ok engineering	the term i ar that ma terms,	s used in AS172 aterials in that str	as a rock substance strength 6-1993, the field guide therein rength range are soils in for isotropic rocks (and

 $\left[\right]$

]

]

 $\left[\right]$

7

Rock Description Explanation Sheet (2 of 2)

	COMMON DEFECTS IN ROCK MASSES Term Definition		Map Graphic Log Symbol (Note 1)		DEFECT SHAPE Planar	TERMS The defect does not vary is orientation	
Parting	A surface or crack across which the rock has little or no tensile strength. Parallel or sub parallel to layering		20 	. 8	Curved	The defect has a gradual change in orientation	
	(eg bedding) or a planar anisotropy in the rock substance (eg, cleavage).		20 L Cleav		Undulating	The defect has a wavy surface	
	May be open or closed.			^{igt} (Note 2)	Stepped	The defect has one or more well defined steps	
Joint	A surface or crack across which the rock has little or no tensile strength, but which is not parallel or sub	1.5-			irregular	The defect has many sharp changes of orientation	
	parallel to layering or planar anisotropy in the rock substance. May be open or closed.		×.	1/10/6-22	Note: The assest influenced	sment of delect shape is partly by the scale of the observation.	
Sheared	Zone of rock substance with roughly				ROUGHNESS Silckensided	TERMS Grooved or striated surface, usually polished	
Zone (Note 3)	parallel near planar, curved or undulating boundaries cut by				Polished	Shiny smooth surface	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	closely spaced joints, sheared surfaces or other defects. Some of		35	1112	Smooth	Smooth to touch. Few or no surface irregularities	
	the defects are usually curved and intersect to divide the mass into lenticular or wedge shaped blocks,			 ~!	Rough 🕚	Many small surface irregularities (emplitude generality less than 1mm). Feels like fine to coarse sand paper.	
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		M: Ann			Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than very coarse sand paper.	
Crushed Seam	Seam with roughly parallel almost planar boundaries, composed of				COATING TERM		
(Note 3)	disoriented, usually angular fragments of the host rock substance which may be more		SI Topor	1. 1. 1.	Stained	No visible coating No visible coating but surfaces are discoloured	
	weathered than the host rock. The seam has soil properties,			27.1		A visible coating of soil or mineral, too thin to measure: may be patchy	
Infilled Seam	Seam of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infiled seams less than 1mm thick may be described as veneer or coating on joint surface.		1	- Starting		A visible coating up to 1mm thick. Thicker soil material is usually described using appropriate defect terms (eg, nfilled seam). Thicker rock strength material is usually described as a vein.	
Extremely	Seam of soil substance, often with		52	I		TERMS Approximately equidimensional	
seam	gradational boundaries. Formad by weathering of the rock substance in place.		TRADUC			hickness much less than ength or width	
		Scan		151		leight much greate than ross section	
2. Parting	fects: / borehole logs show the true dip of defects an is and joints are not usually shown on the grapi d zones, sheared surfaces and crushed seams	hic log unless co	nsidered signific				

Appendix B

Examples of Good Hillside Practice

~]

.

LANDSLIDE RISK MANAGEMENT

, –

|

, ,

| |__

L

AGS SUB-COMMITTEE

APPENDIX J

SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

GOOD ENGINEERING PRACTICE

POOR ENGINEERING PRACTICE

ADVICE	GOOD ENGINEERING PRACTICE	POOR ENGINEERING PRACTICE
GEOTECHNICAL	Obtain advice from a qualified, experienced geotechnical consultant at early	Prepare detailed plan and start site works before
ASSESSMENT	stage of planning and before site works.	geotechnical advice.
PLANNING		
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.	Plan development without regard for the Risk.
DESIGN AND CON	STRUCTION	
HOUSE DESIGN	Use flexible structures which incorporate property designed brickwork, timber or steel frames, timber or panel cladding. Consider use of split levels. Use decks for recreational areas where appropriate.	Floor plans which require extensive cutting and filling. Movement intolerant structures.
SITE CLEARING	Retain natural vegetation whenever practicable.	Indiscriminately clear the site.
ACCESS & DRIVEWAYS	Satisfy requirements below for cuts, fills, retaining walls and drainage. Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.	Excavate and fill for site access before geotechnical advice.
EARTHWORKS	Retain natural contours wherever possible.	Indiscriminant bulk carthworks.
CUTS	Minimise depth. Support with engineered retaining walls or batter to appropriate slope. Provide drainage measures and erosion control.	Large scale cuts and benching. Unsupported cuts. Ignore drainage requirements
Fills	Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall. Provide surface drainage and appropriate subsurface drainage.	Loose or poorly compacted fill, which if it fails may flow a considerable distance including onto property below. Block natural drainage lines. Fill over existing vegetation and topsoil. Include stumps, trees, vegetation, topsoil, boulders, building rubble etc in fill.
ROCK OUTCROPS & BOULDERS	Remove or stabilise boulders which may have unacceptable risk. Support rock faces where necessary.	Disturb or undercut detached blocks or boulders.
RETAINING WALLS	Engineer design to resist applied soil and water forces. Found on rock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above. Construct wall as soon as possible after cut/fill operation.	Construct a structurally inadequate wall such as sandstone flagging, brick or unreinforced blockwork. Lack of subsurface drains and weepholes.
FOOTINGS	Found within rock where practicable. Use rows of piers or strip footings oriented up and down slope. Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.	Found on topsoil, loose fill, detached boulders or undercut cliffs.
SWIMMING POOLS	Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.	
DRAINAGE Surface	Provide at tops of cut and fill slopes. Discharge to street drainage or natural water courses. Provide general falls to prevent blockage by siltation and incorporate silt traps. Line to minimise infiltration and make flexible where possible. Special structures to dissipate energy at changes of slope and/or direction.	Discharge at top of fills and cuts. Allow water to pond on bench areas.
SUBSURFACE	Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.	Discharge roof runoff into absorption trenches.
Septic & Sullage	be possible in some areas if risk is acceptable. Storage tanks abould be water-tight and adequately founded.	Discharge sullage directly onto and into slopes. Use absorption trenches without consideration of landslide risk.
EROSION CONTROL & LANDSCAPING	Control crosion as this may lead to instability. Revegetate cleared area.	Failure to observe earthworks and drainage recommendations when landscaping.
DRAWINGS AND SI	TE VISITS DURING CONSTRUCTION	
DRAWINGS SITE VISITS	Building Application drawings should be viewed by geotechnical consultant Site Visits by consultant may be appropriate during construction/	······
	MAINTENANCE BY OWNER	
DWNER'S RESPONSIBILITY	Clean drainage systems; repair broken joints in drains and leaks in supply pipes.	
	Tapes. Where structural distress is evident see advice. If scepage observed, determine causes or seek advice on consequences.	

LANDSLIDE RISK MANAGEMENT

AGS SUB-COMMITTEE

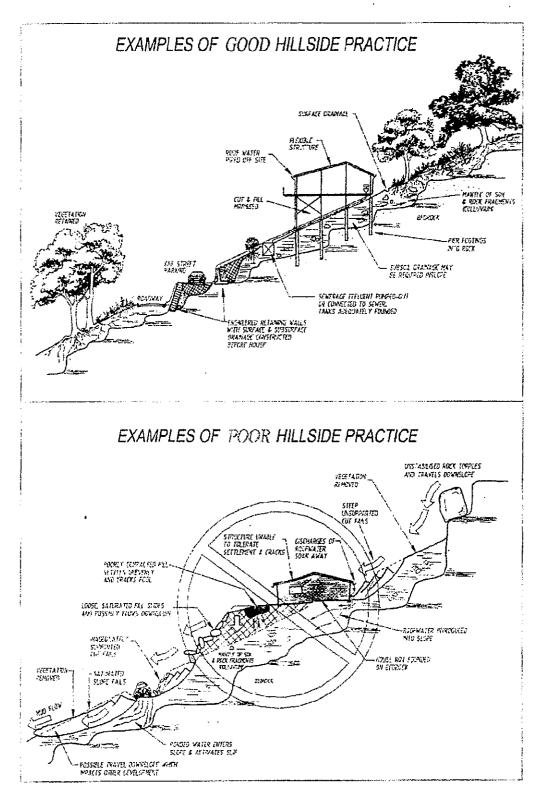


Figure J1: Illustrations of Good and Poor Hillside Practice